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HERMITIAN FINSLER METRICS
AND THE KOBAYASHI METRIC

JAMES J. FARAN, V

Abstract

The problem of local equivalence of Hermitian Finsler metrics under
holomorphic changes of coordinates is solved. On such a Finsler metric
we find some differential conditions which imply that the Finsler metric
is the Kobayashi metric of the underlying manifold (these conditions
are satisfied if the metric is the Kobayashi metric on a bounded, strictly
convex domain in C" with smooth boundary).

0. Introduction

The infinitesimal Kobayashi metric is a real-valued function F,, on the
tangent bundle of a complex manifold M. For pe M and v € M,

Fy,(p, v) =inf{1/r: there is a holomorphic f: A — M

where A = {z € C:|z| <r}. F,, is clearly an invariant of the complex
structure on M , and, indeed, information about F,, can yield informa-
tion about the complex function theoretic aspects of M (see, e.g., [3], [4]).
One can think of F, (p, v) as being the length of the tangent vector v.
One can then define the length of a curve by integrating the length of the
tangent vector to the curve, and define a metric d,, by considering the
infimum of the lengths of all curves joining two points.

It is natural to try to understand the geometry of this metric. However,
the techniques of differential geometry can, in general, be applied only
indirectly, because F,, need not have any smoothness, even away from the
zero section of the tangent bundle. (For example, the Kobayashi metric on
the polydisk in C" isnot C ! .) However, Lempert [5] has shown that when
the complex manifold is a bounded domain D c C* with smooth, strictly
convex boundary, then the Kobayashi metric is smooth. (By smooth we
shall always mean C° . The results of this paper hold when considering
less generous regularity assumptions, but, for what needs to be done here,
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working in such greater generality would only serve to obscure.) Moreover,
Lempert, in the process of obtaining this regularity result, also showed that,
in this particular case, the Kobayashi metric had a number of other nice
properties. We will restate and summarize these as:

Theorem (Lempert[5]). Let D C C" be a bounded domain with smooth,
strongly convex boundary. Then F, is smooth away from {v = 0} and
satisfies the following three conditions:

(1) In every complex tangent direction there is a totally geodesic com-
plex curve.
(ii) The restriction of Fy, to such a totally geodesic curve is a Hermitian
metric with curvature —4.
(iii) d,, is complete.

By totally geodesic complex curve, we mean a complex curve with the
property that any two points of the curve may be joined by a real path in
the curve with length equal to the distance between the two points.

The goal of this paper is to provide a type of converse to the above
theorem. _

A Hermitian Finsler metric on a complex manifold M is a function
F:TM — R which satisfies

(1) Flp,v)>01if v & M is nonzero,

(2) F(p,4v) =|A|F(p,v) forall AeC.

The Kobayashi metric on.a smoothly bounded domain D ¢ C” is an
example of a Hermitian Finsler metric. The bulk of this paper is dedicated
to a study of the differential geometry of smooth Hermitian Finsler met-
rics. §§1-3 deal with the local equivalence problem: Given two smooth
Hermitian Finsler metrics, when can we obtain one from the other by a lo-
cal biholomorphic change of coordinates? The “solution” to this problem
is given in Theorem 1, and may be interpreted as giving an intrinsically de-
fined connection in an intrinsically defined principal bundle. §4 attempts
to interpret some of the local differential invariants of smooth Hermitian
Finsler metrics. §5 calculates the structure equations of the connection.
86 returns to geodesics, and calculates the Euler-Lagrange equations of the
length functional in terms of the connection. §7 interprets conditions (i)
and (ii) of the theorem above in terms of the local invariants, and contains
the converse of that theorem (Theorem 2).

It should be noted that in studying real Finsler metrics, most authors
assume that the unit ball (in the tangent space) is strictly convex. (See, for
example, Chern’s solution of the equivalence problem.) Here; no such as-
sumption is made. For the equivalence method in §§1-3 to succeed all that
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is needed is strict pseudoconvexity. One result of this weakened hypoth-
esis 1s that the notion of geodesic becomes very strange. This problem is
sidestepped, however, because the final theorem—the converse mentioned
above—makes no mention of geodesics. Both conditions (i) and (ii) are
stated in terms of the vanishing of certain invariants, and the notion of
geodesic is used only as motivation.

The author would like to take the opportunity here to thank Robert
Bryant and Robby Gardner for their many helpful conversations and sug-
gestions, and to thank the University of North Carolina at Chapel Hill for
its help in the production of this manuscript.

1. The equivalence problem: The overdetermined algorithm
and reduction to the space line elements

We wish to consider a smooth Hermitian Finsler metric on a complex
manifold. Since we will be working locally, we consider such a metric to
be a C* function F: U x C" — R, where U is an open set in C”",
satisfying the following two hypotheses:

(i) F(z,w) > 0, with equality if and only if w =0.
(i) F(z,Aw)=|AF(z,w) forall AeC.

Here we have identified 7U with U x C". The problem we wish to
study is the following: Given two such functions F: U x C" — R and
F': U'xC" — R, when are they locally equivalent, i.e., given z,€ U and
zé € U', when is there a biholomorphic change of variables ¢ from a
neighborhood N of z, to a neighborhood of 26 taking F into F',i.e.,
such that '

F'(9(2), ¢'(2)w) = F(z, w)
forall (z, w) € NxC"? To solve this problem, we shall apply the Method
of Equivalence due to E. Cartan, a modern description of which the reader
will find in R. Gardner’s monograph [2]. The first step is to describe the
problem as one dealing with the preservation of certain coframes. To do
this, we approach the problem slightly differently.

Since F satisfies condition (ii), given any (real) curve y:[a, b] — U,
we can define the length of y to be :

b
L) = / FO(), 7 (1) dt,

and this is independent of the parametrization of the curve. An equivalent
statement of our problem is to determine when there is a biholomorphic
change of variables ¢ from a neighborhood N of z, to a neighborhood
of zg which preserves lengths of curves. Thus it is natural to consider the
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space R x U x C" = {(t, z, w)} (which may be thought of as the space
of one-jets of maps from R to U), and consider changes of variables
(t, z,w)— (t', 2, w') satisfying the following conditions:

(1) £ =4¢@), 2 =27(z),w =w'(z, w). Equivalently,

df =0 mod(dt),
(1.1) dz'=0 mod(dz),
dw' =0 mod(dz, dw),
where we have used the notation, e.g., mod(dz) for mod(a’zl o, dz").

Thus the coframe (dt, dz,dw,dz,dw) is determined up to transfor-
mation

dt a 0 0 0 O dt
dz 04 0 0 0 dz
dw|—w=|0 B C 0 0 dw
dz 0 0 0 A4 0]|]|dz
dw 0 0 0 B CJ ldw
where a € R, a #0, 4,C e Gl(n,C), B € M (C), and we think of

dz, dw, dz, dw as column vectors.

(2) Given a curve y: R — U we can consider its graph {(¢, y(¢), 7'(£))}
C R x U x C". We make the change of variables to take the graph of any
curve to the graph of a curve. Thus:

(1.2) dz —w'di =0 mod(dz —wdt).

(3) To preserve the lengths of curves, we want the element of arc length,
F(z,w)dt, to be preserved along curves; thus

(1.3) F'(Z ,w')dl = F(z,w)dt mod(dz —wdt).

These last two conditions give us that the coframe (F dt, dz—wdt, dw,
dz —wdt, dw) is determined up to a transformation,

Fdt 1 ¢ 0 0 0 Fdt
dz —wdt O FE 0 0 O dz —wdt
dw —0=|u H G 0 0 dw ,
dz —wdt 0 0 0 FE 0| |dz—wdt
dw 0 0 0 HG dw

where v, u# are column vectors of length n, E, Ge Gl(n, C),and H €
M, (C).
Thus we are looking for mappings which will preserve both the coframes

o and the coframes 6 . In this case we apply the overdetermined algorithm
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(see [2]): We express the coframe @ in terms of the coframe w, 8 = mw,
where m is the matrix '

1

(F —'vw)/a vA”! 0 0 0
—Ew/a E4”! 0 0 0
(uF — Hw)/a HA™'-Gc™'B4™' Gc™! 0 0
~Ew/a 0 0 E4! 0
(uF — Hw)/a 0 0 HA'-G6c'Ba' GT!

We can now normalize m to be the identity matrix except for the
(2, 1)-entry and the (2n + 2, 1)-entry which we normalize to 1. This
is done by taking G=C, E=A4A, H=B,v=0,a=F, u=Hw/a,
and

(1.4) —Ew/a="(1,0, -, 0).

By the homogeneity of F,

oF ; 1
Here j =1, .-, n and we use here, as in what follows, the summation

convention—repeated indices are to be summed. In general, the indices
Jj, k, 1, etc. will range from 1 to », while the indices o, £, y, etc. will
range from 2 to n. Therefore we can obtain (1.4) by taking 4 = 4,
where
_Q9F

1.6 Ay =| v
(16) =173
and /70 isan (n — 1) x n matrix of rank »n — 1 satisfying ANOw =0.If
we let v j be the entries of A4, we can define

0, = Fdt,
a)(l) = —28—Fj dzj,
(1.7) ow

a o« Jj
W, =v jdz ,
K k
W, =dw".
koky o e .
Then (6,0, , @,) is a coframe on R x U x C" and is intrinsically (i.e.,

.independent of choices of coordinates, ‘;fo , etc.) defined up to a transfor-
mation



606 JAMES J. FARAN, V/

t, *=9
1%
) —w0+v wo,
(1.8) 0
=A
k* k

W, =u wO+B w0+C wo
Now consider transformations ® of R x U x C" given by
(1.9) Dt, z,w)=(t/[Al+71, z, Aw),
AeC,A#0,7€R. Then

®°(6,) = 6,
1 Ao
w _
(1.10) (@) =17
@ (wy) = wy ,

@ () = A

So if we quotient by the action of such transformatlons &®, we get a G-
structure on U x P"~ ' : the coframe (wo , wo R cbo) is well deﬁned up to
a transformation,

1*_ 1 b4
W, = pw,+v,0y,
* a y
(1.11) w, =4 g
Lax a ] a b4 a L7
W, =u w,+B yw0+C Q0>

where 4 € C, |ul =1, 4,C € Gl(n —1,C), u,v € C', and
B € M, _,(C). Moreover, any map preserving this G-structure lifts to
an equivalence of the original structure, and any equivalence of the orig-
inal structure descends to an equivalence of the quotients. We will there-
fore only concern ourselves with the equivalence problem on the quotient
Uxp'! , the space of complex line elements. Of course, any explicit cal-
culations we do will be done in homogeneous coordinates, i.e., on UxC" .

2. First order normalizations

We now have, on U x P"~!, that the coframe (w(l), wy , y) is well
defined up to a transformation (1.11). Let & be the principle bundle of
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all such coframes. The general coframe of & will be given by

1 1
W =puw,+v,0,,
a a y
(2.1) w =4 0,
" = uaa)(l] +B% wj + Cayc'u;’).

) u”, B“,/ , C ("y as fiber coordinates of % , equations
(2.1) also define o' , 0%, @" as forms on % . Any equivalence ¢: U x
P! — U’ x P""! will lift to a map of principle bundles ®: # — P
which preserves the forms o' , ", @". The next step in the Equivalence

Method is to use the exterior derivatives of @', ®®, @* to reduce the
group of & . We can write

Taking u, v“, A°

1 1 .
do =y Ao + B, A"+ torsion,
(2.2) dw” = 7%, A’ + torsion,

. 1 X .
do" =" A + uaya)y +17, A @ + torsion,

where the torsion terms are quadratic in the base forms ', ©*, @, and
the forms y =y, B,, =", ¥*, u°,, n", correspond to Maurer-Cartan
forms of the group of &7 . We have the integrability conditions

do' =dw®*=0 mod(w', "), doo=0 mod(w', o, &).

Therefore all the torsion terms can be absorbed into the forms w, 8, ,
7t"y, ¥, u"y , and n;' except the following;

| 1 1 .
do =y Ao +B A0 +aw NGO,

(2.3) do® = 1", A o+ AP0 + c"Ba)ﬂ + e"Bc'uﬂ + f’,/cz;"’),

. 1 i b, .
do® =y" Ao +pu", A0’ +1", N

The idea is now to use the group of & to normalize the torsion coefhi-
cients a_, b“, " Ir f’,/ . We shall see how the group acts by calculating
its infinitesimal action, which can be done by taking the exterior derivatives
of equations (2.3). First, calculating mod(", w”) and mod(A*(base)),

0=d’vw' =o' A& Ada,+an ~f B)
+o' Aidy +b"B n0 +e' B n0).
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Add this to its conjugate and evaluate modulo w” , % , o' , /\3(base) :
0=w' A@*A (da,+an' ,—f B,

+wi/\d)ﬁ/\(a’a/; +aanﬁﬁ—f‘7ﬁﬂa)

1 a . B 1 B .y
+w Ae b—,ﬂa/\w +w Ae ?ﬂB/\w.

It follows from this that we must have e* 5= 0 and
da,= ~aynya + fyaﬂy mod(base).

From this we see that we will be able to choose the frame so that g, = 0
provided that the matrix (f ya) is invertible. To see this, we need to
calculate this matrix in coordinates. ‘

Parametric calculations I. First, note that we can take

1 oF ,
2.5 w, =—-2—— dZ s
(2.5) 0 ™,
a @ Jj
(2.6) W, =V ja’z ,
where the (n — 1) x n matrix v* ; hasrank n —1 and satisfies
(2.7) v w’ =0.
Then
(2.8) o' = —2;;% dz’ +v,v", d7,
w
(2.9) o =4"v' d7.

The forms w(l) and wg form a basis for T°U , so we may write
(2.10) dz’ :ajw(1,+uj7wg

for some a’, u’ , - We then must have

(2.11) J,ﬁ:—2a’m+u’7vyk,
OF
2.12 ~2=—"—ad =1,
(212) ow’
OF
(213) Wu y = 0,
(2.14) vajaj =0,
(2.15) v =8°
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(2.14) implies that a’ = 2w’ for some 4 € C. From (2.12) we see that
A=-1/F. Thus

J

(2.16) dz’ = —l—;—wé + uij(y).
Also,

217) w’ =A’0‘«w‘/’
where
(2 18) A’a A‘/ _Aa A/y _Ja

) T Ay T %

1 1 1 1 la Y
2.19 o =20 - v Ao
(2.19) -
Therefore,
] w’ 1 w’ i )

(2.20) dzj=—ﬁ—w + L—FU"+uJ" 47 ",

We can now calculate that

a __ 1 b4
(2.21) dw _;FA v’ dw Ao mod(w’).
So let
e 1 a Jj
(2.22) @y = 7V jd'w ,
R 1 a 7 Jj o y a 1
(2.23) @ ZFC U jdw + B w,+u
Then
(2.24) do” = %A“yc"’ﬂw“ Aw' mod(w),
where
o1 Yy _ a ry _ sa
(2.25) ¢, =Cc.C', =4,
so that
1 a 1y
(2.26) = ;A ,C7

Thus, the matrix is always invertible.
Note also, the calculations above show that

(2.27) b " =c p=e B=0,
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so that

(2.28) do” =1" Ao’ + "0 N
Then by calculating mod(w’ , A’ (base)) we obtain

2 « o . 1 LY
O=d o' =df, -n" f +if" v+ )re 1o,

which implies that

(2.30) df*, =" f*, —if"w—un", modbase.
Thus we can normalize

(2.31) a,=0,

(2.32) ==,

and restrict ourselves to the bundle %, of coframes satisfying (2.31) and
(2.32). This bundle will be preserved by equivalences.

3. Second order normalizations
From (2.4) and (2.30) we see that now on the bundle %,

(3.1) B,=0,

(3.2) n,=m ., —id,y.

So we now have

do' =y rw' +0" Ag

a?

(33) do"=2" A0 +o" A0,
do" =y" Ao +u", Ao’ + (", —iSjy)rnd +a" rg",
where 7" are ¢, are new torsions:

1 i 7 B v B
(3'4) ’7(1 = a(!w + b(!w + Cﬂ"/w + e”Bw + f;!yw + gaﬁw ’

a a 1 (z B @ L7 I B
(3.5) ?, _hu w +k, 0+, 0" +m, 00,

and we may assume

(3.6) C.=-C

ay yo?

(3.7) [* =-1"

nv vou
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Next, let us calculate the relations which we get among these torsion
coeﬂic_icnts by using d* = 0. First by calculating mod(w®) we find

(3.8) O=d’w' =(dy-—n)r0' Ad" mod(w®).
Hence,
(3.9) 0= (—idy —nzna’) A modo’).

Adding these two equations yields

(310)  0=(-ng A" —nAd’)Ae' mode”, o, o' - o)

so that

(3.11) 0=y A0 +n A0’ mod(w®, o, o', 0.
It now follows from (3.4) that

(3.12) foy =L

(3.13) 8ap = &z = &pur

Second, again calculating mod(w’) gives
(3.14) O=d'e*=d"Ap, Ao mod(w).
From (3.5) it follows that ¢, = 0:

(3.15) b=k =12=mS,=0.

Now, having eliminated most of the torsion in this fashion, we can
calculate the infinitesimal action of the group on the torsion by calculating

o' = 0, as we did in the last section. A straightforward calculation
gives
(3.16) da,=a,n’, - f,7" modbase,
(3.17) db,=2iby —b ', — gy modbase,
- _ u u
(3.18) de,, = -l W —c,m , —C,,T,

1 u 1 U
—3futt, + 53S0, modbase,

(3.19) deaB = —le ¥ — eyﬁny,/ - eaﬁ—,naﬁ - gaﬁyaﬁ mod base,

— _9; u I
(3.20) df,, =-2f v ~f7 o~ 1, , modbase,
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_ ga a
(3.21) dg ;= 8,57 o~ 8as”lp mod base.
Assumption. The Hermitian matrix g_ 3 is positive definite (in partic-
ular, invertible).
It follows that we can normalize
(3.22) b, = €5 = 0.

In order to make calculations easier, we do not normalize g,  nor do we
normalize any of the other torsion. The normalizations (3.22) then give
that

(3.23) yr=ut,=0,
and we now write
(3.24) do' =y Ao +aaa)a/‘\a)l +c,,0" A

+faya)a/‘\a)y+ga/;wa/‘\d)ﬂ,

(3.25) do® =7, Ao’ + @A,

(326) do =(z"y", -~ is'Y) NG +E"0' Ao + F* o' A

+G'p0' Ao’ + H o' A0+ 0" A e’
+K o' A0 + LY o A"+ M0 Ao
7 U 4
3 Vi LU (¢} 7 . /?
+Nww A"+ P B ND,
where
(3.27) LY =-L"

T uye
The equivalence method now calls for us to normalize g, i and then
require that the matrix n"? be a skew-hermitian with respect to 8ap -
This, however, would make certain calculations more difficult. To achieve
the same result we do as follows.
Calculating mod(w', ®* Aw’, ®* A @) gives

B

[8

(3.28) 0=d’n' = (dg,p + Tup + 7p, +Hy0 + N,,;0°) N Ad
+F o' Ao Ao’ — L, 0" AN’ NG .

g adpy

Here, and in what follows, we shall use g, 5 to lower indices and g"B , the
inverse of g 5, to raise indices. Thus

(3.29) F_ =L =0,

ad (6737
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_ N4 .G b

(3.30) A8op + Map * Mpa = Aupy® + Agoe @ — Npy 0
: 7 1 1
—NC_,Ba) —HBQa) —Hﬁﬂw ,

with
(3.31) A
So let us define
_ .Y y 1
(3.32) Ppo = Tpo — Ayp, @ + Np, 0 + Hy 0.
Then
(3.33) dgaB+¢Ba+¢aB =0.
Also,
(3.34)
do" = ¢ A0’ +0" Ao +4,%,0" N0 —N° | o' N’ - H“ywl Ao,
(3.35) ) i
da® = (2", —i6jy) A&’ + Eo' Ao + G"Ba)l Ao’ + J“Bwl A@

B

+1'('0'y':c)7/\a)I +M"7[;a)y/\a)ﬂ +Pay5a)y/\c'oﬁ.

We may now assume that

(3.36) N, = —N“W.

Theorem 1. There are unique forms y = W and ¢“y satisfying (3.24),
(3.33), (3.34).

Proof. Since we have constructed such forms, existence is clear. To
prove uniqueness, suppose w* and ¢(’y* are other such forms. Then,
using (3.24) we obtain

0=i(y -y Ao +(a, -a)o0" Ao +(," —¢c, )" Ao’
(3.37) ‘

@ . * « . B
+(f, — L))" NGO+ (g, — 8,500  AO".

This implies that

(3.38) 0=(i(¥ —¥)+(a, -a)o) Ao,
and hence that
(3.39) W —w)+@ —a)0"=0 mod(w'),

which is impossible (since ¥, y* arereal) unless a,” =a, and y* = y.

The proof that (o”y* =", is similar, by using (3.34) instead of (3.24).
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Thus, on the bundle %, , we have an e-structure—the forms o', o,
@", y, 9", are intrinsically defined on %, and form a basis for TP, .
This completes the formal solution of the equivalence problem. The func-

tions a_, Cops f, . 8,5 are second order invariants, and the functions
[s3 o (o3 o 104 e (a4 O o4 s

4y u ny,s H?, E”, GB’ J 5> K g My/;, Py/; are third order

invariants.

4. Interpretations of the second order invariants,
or, parametric calculations II

In this section we wish to present some geometric interpretations of the
second order invariants q_, Coy > fay, 8.5 - In particular, we would like
an interpretation of the definiteness of g ;. To this end, we continue the
parametric calculations carried out in §1. Recall that we may take

l J
4.1 = —2—d
(4.1 ow’

(4.2) o' =t jdz'.

(These are written as forms on U x C”, and present forms on U x P"™!
Thus these are not the intrinsic forms on %, , but rather the pull-back
to U x P"~' of the intrinsic forms. Since we can determine the intrinsic
forms from these using the group action—cf. (2.1)—we can work with the
forms (4.1) and (4.2) so that we do not have to carry around the excess
baggage of the group parameters.) We then have

1 .
(4.3) do® = Fvyj dw’ Aw'  mod(e).
So we let
.o 1 y Jj

(4.4) @y = Y jdw .
Then

k .o _ 1 ko2 w* oF J.
(4.5) U, = F dw F2 i —dw
SO

kK pok o.a 2 wr oF J

(4.6) dw =Fu &, Y Py —dw

We shall want to define
(4’7) 6.0(1 - w(g +pa?w? + qawl ,
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by choosing pay and ¢” so that the normalizations (3.22) are satisfied.
Calculation gives

(4.8)
2 R - 2 .
do' =2k 0L ukl—,wa/\cbg+2F-——Q—.—F~—uj uk«wa/\c'og
ow'ow* ¢ owlow* * 7
o 2 P 1.
+w A —2Lw—u1 wl+2iuk—u1 o’
owlows F 7 owlazk P

0w -=""u" ;o
FBZk o Fazk B
1 OF x 1 1 O0F k 1 0F 12)

F a 1 OF & B |
+w1/\(18 S OF r 5, 1 0F kool

- —=— ——7d
F?ozk F yuw* F g~
20F r 2 8F x i\ 1
————Y +=————— WU |0 A®
( Fazk" * Fawlazx ¢
2 .
-~ 28.—F}'(ukauj ' Ao’
ow’dz ’
This gives us the following: .
2 o 2,02y
(4.9) 8.5 = 2F——§—_—£——Eu1 ukB = LF)}_(ujauk,—(,
dw’ow ow’ow
8*F ; x  O(FYH j x
".—ku au ¥ = _‘-—-‘Eu a s
ow’dw dw’ dw v
the final equalities here using (2.13).
Definition. / = {w: F(z, w) = 1} is the indicatrix of F .
Proposition 1. (1) The matrix g, j Is positive definite if and only if the
indicatrix is a strictly pseudoconvex real hypersurface.
(2) The matrix f, , vanishes identically if and only if the Finsler metric
is Riemannian.
Proof. (1) Note that (2.13) implies that the vectors (ula , u"a) ,
a=2,-- ,n,arein the maximal complex tangent space of 7, . Since W N

has rank #n — 1, they span the maximal complex tangent space. Equation
(4.9) thus displays g, 5 as the Levi form of the real hypersurface I, .

(4.10) £, =2F

(2) We calculate, using the homogeneity of F ? and (2.13),

2 2 . 2 . .
O ok 22U g _ppPF iy,

4.11 —_ _
( ) owlow* ow  “ owl ¢
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Also we have

——BZ(FZ) ww® = a(F%)wj =0
dw! ow" . w’

(4.12)

Since the vectors (ula, o, u" ), a=2,---, n,together with (w', -,
w") span C" by (4.10), the vanishing of f, , is equivalent to the vanishing
of the quadratic form
0*(F?)
ow’/ow*
However, if this form vanishes, then F 2 must be linear in w , and since

F is real, linear in @ as well. It follows that
F* = h(2w'n,

and the metric is Riemannian.
Returning now to (4.8), we make the final normalizations by taking

2
v _ A B O°F g G
(4.13) p,=2 awwjazku Mg
; 2 3 9°F kK j
4.14 g =-=g" —— _w'i,.
(414 F& Huiak " F

It then follows that

20F x 2 0F i« 2. .5 OF ki
(415) a,=2—u' —=—"——wd _+Zf g _ ,
) Fozk" « Foulozk Fror®  gulgz* d
C = — ﬂ——-—uk uj +ﬂ—wk uj
(4 16) «r B’wjazk “ 7 B’wjazk v
* 2 2
wp O°F k] wp O°F
_j:rﬂg awja.zku YU B +f7ﬂg awjazku oM op

Proposition 2. If'the metric is Riemannian, then a_ and €,y both van-
ish identically if and only if the metric is Kdhler.
Proof. We suppose Fl=h j,;(z)w’ wk , and then calculate that

1 (8H,; Ohy\ 14
C«w—ﬁ(azf Tk )y

L (Ohyg OH;\ 7
a"=P<82jnazi>wwu"'
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It follows that @, and c,, vanish identically if and only if

Ohy Ohy

oz’ az"’

which is the Kihler condition.

5. Structure equations

In this section we derive the formulas for the exterior derivatives of the
forms w and (p"‘?. We do this by using d*=0. First, differentiating
(3.24) we obtain

(5.1) Ozwa/\a)l/\Daa+ia)lA‘I’+wa/\w?ADca?+wa/\c'oy/\Dfay,'

where
, « 1 B
52 D= da e b (B~ fauB" )0 + (K, £y pe”
+(2¢,, + aﬂAQ“? + /‘;r/H#a)d)? + (Hg, = J‘:I‘/J?B)d)ﬂ ’
(5.3) ¥=dy =ig 0" A,

_ . u u
Dcay - dcay e + C? o + Cou? 5

U U U 1
+ (N, —c H  —c H o

u “ 1 u
(5.4) + %(Guy - Gya - f;qu ;T f:/uK (x)w —a,C,0
1 U u 8 _ no P
+ 7(M/?u7 - M/?"/a - fauM"/ pt fVuMa /})a) fupN a®
1 =

- E(aug"//? — 485~ fauPuyl_} + f“/qu/? - 2NB(¥7)(0/} ’
(5.5)
Df, =df, , -2if v+ f;ﬂ/wﬂu + f(m(p”,/ + Ja?coj
+2C, 4} ~a,f )0’ + P o ~f A" & 4,0

Therefore, by Cartan’s lemma we have

Il

1 LU 1
(56) Dca"/ C(xy.#w +Cu‘/,}lw +c{z“},lw 4

(5.7) Df, =1, @'+ 1, &+

1
wy, fit (z*/,lw 4
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where

58) o= Fos

(5.9) cay,”+cw,a+cua,7=0,
(5.10) Caroi = Jowr = Gaie = Sou a0
Further, from (3.6) and (3.12) (differentiated) it follows that
(5.11) Coy 1 = ~Cpa 1

(5.12) . | ot = "Cra,u>
(5.13) Cop it = "Cra. it

(5.14) Sy 1=t s
(5.15) Jov ou = hoau>
(5.16) fa%ﬂ=+fya,ﬂ,
(5.17) oy = Lya>

(5.18) ' Py =Py

Substituting (5.6) and (5.7) into (5.1) gives
(5.19)  0=(i¥+Da, A" +c,, 0" A& + [, 0 AD)Aw.
Therefore, ;
(5.20) ¥+ Da, A0+, 0" AW+ f,, 0" AG =AW
for some one-form A. Taking conjugates and adding we obtain

_ o o y o .Y L
O_VDaa/\a) +C, 10 AN +fay,1w AW —AAN®

(5.21) ;

%Daﬂwﬁ +cl%,1coﬂ Aw’ +f56’1w N —AN®.
It now follows from Cartan’s lemma that

y a .y 1 1
(5.22) Da,=a L@+ R0 +fay’1co +a, @ t+a, @,

o

(5.23) i=-a, @ —a, lcuE + Qo' + bwl_
with

(5.24) aa,y—ay,a=2Cay,

(5.25) R,=R,.

We then have, from (5.20),

dy = —ig, ;0" A’ —iR o' Ao’ —ia, (0" Ao +iay 0 Ae'+iQo A
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Second, differentiating (3.34), we obtain
(5.27)

0= cb#/\wy/\DAya#——w"/\wy/\DNO‘M—w1 /\wy/\DHay+(Day/\w7,

where
(5.28)

DA, = d4,”, - Ayp/t(pap + Avap(pp/t + Apaﬂ(ppy — 4,

+H* AL o -4 AL o+ (H f, —2N" A7 Yo,

(5.29)

DN“M = dNaM - Np#*/(oap + Napy(pp# + Naﬂpq)py
c
c

o o a P 1 o a p
+ %(A,/ K -4 K Yo +(H ¢, —2N" N o

1 a p a ¥ B a xrp ay . T
+ 5(‘4? pM #B_Aﬂ pM y[?)w +(_Ap N w_cwdf)w

+(A4,"

p a pp - B
7 pP #B_Aﬂ pP y[?)w ’

(5.30)
DH®,=dH", - H" ¢° +H" ¢" +iH )y
+ (K, + A EYe' + (-2N° ) H® + H 4 )0
(M- A, G o’ (a0t — A7 H + N )i
+ (P = A wd

@ I @ e .. B
(5.31) @ =dp", -9, Ao", — g 0" NGO
Note that
(5.32) DA, =DA,",
(5.33) DN®  =-DN" .

Equation (5.27) may be written
1 @ . a x 1 3
(5.34)  0=(@", + DA, " A+, N, A" —DH' Ao )r&',
It follows that
x @ . x u ¥ I qa
(5.35) ®7+DAy#Au+pN s N Q@ -DH Ao =i,

for some one-form A“W = /1;7 . By differentiating (3.33) we can calculate
that

(5.36) 0=(DB7+(D7B.
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Together with (5.35) this gives

- 4
(5.37) O_DAyBﬂ/\w +(DNBW—/1M)/\

. & 4 1
+DA; AN +(DM/55—/1YBC7)/\0) -DH ;N .

U L
w —DHBY/\a)

The Cartan Lemma then yields

_ p o ) . 7
(5.38) DAyl?u - Ayl?u,pw +Ayﬂu aw +A +A7ﬂu,5w
: 1
+A}’/§ﬂ,1w +A}’/§ﬂiw .
_ o’ 3 . 7
(5.39) DNBW _NBW pw +Nﬂyu ;0 +Nﬂyu b +Nﬂ7u,6w
: 1 I
+N5yﬂ’]w +NBW’Ia) s
_ p a P ) .G
5.40 ’IBM_LB?WC‘) +L5w6w +L5wﬁw +L/3Vu€rw
( . ) ) 1 j
+LBW’1w +L/?w,iw ,
(5.41)

_ p 4 . p . & 1 I
DHEy_Hy?pa) +H/§y,(,0) HB«/,pw +H5.y’&w +H/?y,1w +H/§Mw ,
where
(5.42) Argu p=Aepp.io
(5.43) Ay‘u AB"/vc’r.J‘z ’

(5.44) Aspy p— Novpowt Lpp i = 0,
(5.45) Ayl?#,fr Ny/fa u+L/ﬂa i =0,
(5.46) AyBu,l ’HB/ i
(5.47) AYI?M,I _H/ﬂ i
(5.48) Novuwo =Ly w0 = Noypu ™ Lgpous
(5.49) Npvuwo = Loy uo = Npo.u = Lyno us
(5.50) Naow 1 = Lpyun +Hg, , =0,

. - =1L +H =0
(5.51) Nﬁyu,l Bru,1 ’
(5.52) H}’B,l HB?,I = 0.
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Hence we have

do®, =", A (p"y + gyBcSZLb“ Ao

+4°

S ug@ N0+ A0 oA+ A", e

a ) a a " .G a LM 1

(5.53) +N% L0 A" + N e AG" + N 0" A
a LU 7 o .U N « oy 1

+ L - Aw + L . Aw +Lw,iw AW

+Hay ﬁw[/\wﬁ-i-H“y &wl/\c'oa+H“y le Aw'.

6. Geodesics
In this section we wish to derive the Euler-Lagrange equations of the
geodesics of our Finsler metric. So consider a curve y: [0, 1]— M. If y
is regular, i.e., if y'(¢) is never vanishing, y has a natural lift to a map
into PTM , t— (y(1), [ ()]), where [y'(¢)] is the complex line spanned
by '(¢). We can then lift this curve in PTM to a curve I': [0, 1] — P
satisfying

(6.1) ew" =0,
(6.2) o' =idt, A1>0.
The curve I' may be thought of as a coframe adapted to y. Recall that
1 oF |
w = —2 —.dZ .
#c’)wj

If y is given by ¢ — z(¢), the lift of y to PTM will be given by ¢ —
(z(1), Z'(¢)). Then

To' = —2u——(z(t), 2 (1) 2" () = ~uF(z(1), 2 (1))
Sw

by the homogeneity of F,s0 g = —1,and A= F(z()Z'(¢)) in (6.2). It
follows that the length of the curve y

| S
(6.3) L(y)=/0 o'

Now consider a smooth variation : (—¢,¢) x [0, 1] — M, y.(f) =
7(s, t). We adapt a coframe I'| to each y, in a smooth fashion, obtaining
a smooth lift T': (—¢, ¢) x [0, 1] —» &, satisfying

(6.4) Fe® =0 -0)=0 mod(ds).
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Let I';(¢) =I(s, 1), and define

’ . 1
(6.5) ﬂg:AIﬁ&

Then, letting C be the curve ¢+ (0, ¢) in (—¢, ¢) x [0, 1], we have

f(0)=/La,a,F*wl=/C(%—ld(F*wl)+d(g?Jr*wl>>

(6.6) o, o
=/(m_M( ))+5ers=0

Suppose

(6.7) o' = Ads + Bdt,

(6.8) , Mow® =C%ds,

(6.9) ; o = F'ds + G" dt,

(6.10) My =Hds+ Jdt.

Assume that the variation y fixed endpoints: y(s, 0) = (0, 0), y(s, 1) =
y(0, 1). It then follows that B(s, 0) = B(s, 1) = 0, and the boundary
term in (6.6) vanishes:

/—Jd ")

=/E_JF(il///\wl+aaw"/\wl+ca7w"/\w7
c

(6.11) + £, 0" A& +g,ﬂ@a/\@5)

=/ﬁHB—MJ+GmQB+@ﬁH«@ﬁHM
C

==/Rq-MJ+C%aB+A;V+g #)1ds,

c

since f'(0) isreal, asare H and B. Since 4 and C® are arbitrary (they
correspond to the variation of the curve in M ), if f(0) is minimal, we
must have

(6.12) J=aB+f,

@y

G’ +g,,6" =0.
In this fashion we obtain the following:

Proposition 3. Suppose y: [0, 1] — M is a geodesic. Then when we
choose a frame along y so that ©" = o' — @' =0, we must also have
l//—aw+fw+glﬂa) =0. '

Yy (
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Note that this does not say that if we have a curve y and a coframe
along 7 with 0" =0' —@' =y = aaa)1 + f,0 + gaﬂ—c'oﬂ =0, the y is
therefore a geodesic. To obtain such a statement we would need further
assumptions, for example, that the indicatrix is strongly convex. The result
above, however, is sufficient for our present purpose.

7. Characterization of the Kobayashi metric

- Having a description of the geodesics of our metric, we return now to
Lempert’s results, and consider totally geodesic complex curves.

Let y: { — y({) be a holomorphic curve in M . Such a curve has a
natural lift 9: ¢ — (hy(0), ['({)]) to a curve in PTM which satisfies
7" = 0. Note that
(7.1)

d(a,0' + £, +g,,0")

= (¢’ +i8 W) A(a,0' + f,,0" + g,,0")  mod(A’(base)).

This describes how the group of the bundle &, acts on a @' + f,_ & +

_ (Y"/ ;
g, Bc’oﬂ . It follows that the vanishing of all the aaa)l + fayci)7 +8, ﬂ—c'oﬂ is
independent of the choice of coframe. Now,

ok 1 .7 i PN YRR
(7.2) 7 (a,w +fm/a)’ + g{lﬁwﬂ) =A7 (w)+Bj (w).
So if there are geodesics in y, they occur only in the directions
(7.3) A0 +Bo =0

Further if y is totally geodesic, i.e., if y is tangent to every real direction
along y there is a geodesic which remains in y,s0 4, =B =0, and

(7.4) 7 (a,0" + & +g,,0") = 0.
However, along any holomorphic ¥, w" =0 which implies

(7.5) 0=do" =" AN

along y. Therefore,

(7.6) o' ="

for some functions /”. So if y is totally geodesic, then

(7.7) a0 +f,lw + gaﬂflﬂ_a)i =0,
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from which it follows that / = 0, and hence a, = 0. Thus for y to be
totally geodesic we must have

(7.8) a,=0,

(7.9) @ =0

along y. This last equation implies, in consequence of (3.35), that
(7.10) “=0.

Thus we have shown
Proposition 4. If through every point of M and tangent to every com-
Dplex direction there is a totally geodesic complex curve, then

aa=Ea=0.

Moreover, the totally geodesic curves are the integrals of " = ®* =0.

Along such a totally geodesic curve, the restriction of the Finsler metric
is given by ds* = o' , which is a Hermitian Riemannian metric, and
@ = iy is the corresponding Kahler connection form. Moreover,

(7.11) dp = —Qu' A

Thus the curve will have curvature 2Q. Along an arbitrary holomorphic
curve, @* = [“w', and

(7.12) dp = ~(Q - g 51°1"' Ao,

so such a curve has curvature

(7.13) 20 - 281" <20.

Theorem 5. Let M be a complex manifold with a smooth complete
Finsler metric F with strictly pseudoconvex indicatrix satisfying

a,=E*=0, Q=-2.

Then F is the Kobayashi metric of M .
Remark. Notice that while this theorem was motivated by a study of
geodesics, it (and its proof, below) contains no mention of geodesics.
Proof. Pick pe M, ve T,M, v#0,and y: A— M holomorphic
with »(0) =p, »,(8/8z) =Av, A > 0. Then the restriction of F to the
image of y is a Hermitian metric with curvature bounded above by —4
by (7.13). So, by [3, Theorem 2.1, Chapter 1],
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Thus F(p,v) < F,,(p,v).

Moreover, {w” = @* = 0} is a Frobenius system on PTM , so the
leaf through (p, [v]) is a well-defined submanifold N, and ds’* = w'o'
defines a complete metric on N with curvature —4. Therefore N may
be isometrically covered by the unit disk. Let I': A — N be the covering
map with

nol(0)=p, 7oy (0)=iv, A>0,

where 7: PTM — M is the projection. Then consideration of y = n o
y: A — M yields the other inequality: F(p, v)> F, (p, v).

References

[1] S.-S. Chern, Local equivalence and euclidean connections in Finsler spaces, Sci, Rep. Nat.
Tsing Hua Univ. Ser. A 5 (1948) 95-121.

[2] R. Gardner, The method of equivalence and applications to control theory, CBMS Re-
gional Conference Series in Math., Amer. Math. Soc., to appear.

[3] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Dekker, New York,
1970.

[4] ——, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math.
Soc. 82 (1976) 357-416.

[5] L. Lempert, La métrigue de Kobayashi et la représentation des domaines sur la boule,
Bull. Soc. Math. France 109 (1981) 427-474.

STATE UNIVERSITY OF NEW YORK, BUFFALO





